Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(from1(X)) -> FROM1(s1(X))
PROPER1(from1(X)) -> FROM1(proper1(X))
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
TOP1(mark1(X)) -> TOP1(proper1(X))
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(dbls1(cons2(X, Y))) -> DBLS1(Y)
PROPER1(indx2(X1, X2)) -> PROPER1(X2)
PROPER1(dbls1(X)) -> DBLS1(proper1(X))
PROPER1(sel2(X1, X2)) -> PROPER1(X2)
TOP1(ok1(X)) -> ACTIVE1(X)
SEL2(mark1(X1), X2) -> SEL2(X1, X2)
ACTIVE1(indx2(X1, X2)) -> INDX2(active1(X1), X2)
ACTIVE1(indx2(cons2(X, Y), Z)) -> INDX2(Y, Z)
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(dbls1(X)) -> DBLS1(active1(X))
ACTIVE1(dbls1(X)) -> ACTIVE1(X)
PROPER1(indx2(X1, X2)) -> PROPER1(X1)
ACTIVE1(dbls1(cons2(X, Y))) -> DBL1(X)
TOP1(mark1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(sel2(X1, X2)) -> SEL2(proper1(X1), proper1(X2))
DBLS1(mark1(X)) -> DBLS1(X)
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
ACTIVE1(sel2(X1, X2)) -> SEL2(X1, active1(X2))
ACTIVE1(sel2(s1(X), cons2(Y, Z))) -> SEL2(X, Z)
ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X1)
SEL2(X1, mark1(X2)) -> SEL2(X1, X2)
PROPER1(s1(X)) -> S1(proper1(X))
ACTIVE1(indx2(cons2(X, Y), Z)) -> CONS2(sel2(X, Z), indx2(Y, Z))
PROPER1(dbls1(X)) -> PROPER1(X)
PROPER1(indx2(X1, X2)) -> INDX2(proper1(X1), proper1(X2))
S1(ok1(X)) -> S1(X)
INDX2(mark1(X1), X2) -> INDX2(X1, X2)
ACTIVE1(from1(X)) -> CONS2(X, from1(s1(X)))
ACTIVE1(indx2(X1, X2)) -> ACTIVE1(X1)
DBLS1(ok1(X)) -> DBLS1(X)
PROPER1(sel2(X1, X2)) -> PROPER1(X1)
DBL1(mark1(X)) -> DBL1(X)
SEL2(ok1(X1), ok1(X2)) -> SEL2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
ACTIVE1(dbls1(cons2(X, Y))) -> CONS2(dbl1(X), dbls1(Y))
ACTIVE1(from1(X)) -> S1(X)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(from1(X)) -> PROPER1(X)
ACTIVE1(sel2(X1, X2)) -> SEL2(active1(X1), X2)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
FROM1(ok1(X)) -> FROM1(X)
INDX2(ok1(X1), ok1(X2)) -> INDX2(X1, X2)
ACTIVE1(indx2(cons2(X, Y), Z)) -> SEL2(X, Z)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(from1(X)) -> FROM1(s1(X))
PROPER1(from1(X)) -> FROM1(proper1(X))
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
TOP1(mark1(X)) -> TOP1(proper1(X))
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(dbls1(cons2(X, Y))) -> DBLS1(Y)
PROPER1(indx2(X1, X2)) -> PROPER1(X2)
PROPER1(dbls1(X)) -> DBLS1(proper1(X))
PROPER1(sel2(X1, X2)) -> PROPER1(X2)
TOP1(ok1(X)) -> ACTIVE1(X)
SEL2(mark1(X1), X2) -> SEL2(X1, X2)
ACTIVE1(indx2(X1, X2)) -> INDX2(active1(X1), X2)
ACTIVE1(indx2(cons2(X, Y), Z)) -> INDX2(Y, Z)
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(dbls1(X)) -> DBLS1(active1(X))
ACTIVE1(dbls1(X)) -> ACTIVE1(X)
PROPER1(indx2(X1, X2)) -> PROPER1(X1)
ACTIVE1(dbls1(cons2(X, Y))) -> DBL1(X)
TOP1(mark1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(sel2(X1, X2)) -> SEL2(proper1(X1), proper1(X2))
DBLS1(mark1(X)) -> DBLS1(X)
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
ACTIVE1(sel2(X1, X2)) -> SEL2(X1, active1(X2))
ACTIVE1(sel2(s1(X), cons2(Y, Z))) -> SEL2(X, Z)
ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X1)
SEL2(X1, mark1(X2)) -> SEL2(X1, X2)
PROPER1(s1(X)) -> S1(proper1(X))
ACTIVE1(indx2(cons2(X, Y), Z)) -> CONS2(sel2(X, Z), indx2(Y, Z))
PROPER1(dbls1(X)) -> PROPER1(X)
PROPER1(indx2(X1, X2)) -> INDX2(proper1(X1), proper1(X2))
S1(ok1(X)) -> S1(X)
INDX2(mark1(X1), X2) -> INDX2(X1, X2)
ACTIVE1(from1(X)) -> CONS2(X, from1(s1(X)))
ACTIVE1(indx2(X1, X2)) -> ACTIVE1(X1)
DBLS1(ok1(X)) -> DBLS1(X)
PROPER1(sel2(X1, X2)) -> PROPER1(X1)
DBL1(mark1(X)) -> DBL1(X)
SEL2(ok1(X1), ok1(X2)) -> SEL2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
ACTIVE1(dbls1(cons2(X, Y))) -> CONS2(dbl1(X), dbls1(Y))
ACTIVE1(from1(X)) -> S1(X)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(from1(X)) -> PROPER1(X)
ACTIVE1(sel2(X1, X2)) -> SEL2(active1(X1), X2)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
FROM1(ok1(X)) -> FROM1(X)
INDX2(ok1(X1), ok1(X2)) -> INDX2(X1, X2)
ACTIVE1(indx2(cons2(X, Y), Z)) -> SEL2(X, Z)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 10 SCCs with 27 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM1(ok1(X)) -> FROM1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FROM1(ok1(X)) -> FROM1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(FROM1(x1)) = 3·x1   
POL(ok1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(CONS2(x1, x2)) = 3·x1 + 3·x2   
POL(ok1(x1)) = 2 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S1(ok1(X)) -> S1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S1(ok1(X)) -> S1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(S1(x1)) = 3·x1   
POL(ok1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INDX2(ok1(X1), ok1(X2)) -> INDX2(X1, X2)
INDX2(mark1(X1), X2) -> INDX2(X1, X2)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


INDX2(ok1(X1), ok1(X2)) -> INDX2(X1, X2)
INDX2(mark1(X1), X2) -> INDX2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(INDX2(x1, x2)) = 3·x1 + 3·x2   
POL(mark1(x1)) = 3 + 2·x1   
POL(ok1(x1)) = 3 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(X1, mark1(X2)) -> SEL2(X1, X2)
SEL2(ok1(X1), ok1(X2)) -> SEL2(X1, X2)
SEL2(mark1(X1), X2) -> SEL2(X1, X2)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(X1, mark1(X2)) -> SEL2(X1, X2)
SEL2(ok1(X1), ok1(X2)) -> SEL2(X1, X2)
SEL2(mark1(X1), X2) -> SEL2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(SEL2(x1, x2)) = 3·x1 + 3·x2   
POL(mark1(x1)) = 3 + x1   
POL(ok1(x1)) = 3 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBLS1(ok1(X)) -> DBLS1(X)
DBLS1(mark1(X)) -> DBLS1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DBLS1(ok1(X)) -> DBLS1(X)
DBLS1(mark1(X)) -> DBLS1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(DBLS1(x1)) = 3·x1   
POL(mark1(x1)) = 3 + 2·x1   
POL(ok1(x1)) = 3 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL1(mark1(X)) -> DBL1(X)
DBL1(ok1(X)) -> DBL1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DBL1(mark1(X)) -> DBL1(X)
DBL1(ok1(X)) -> DBL1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(DBL1(x1)) = 3·x1   
POL(mark1(x1)) = 3 + x1   
POL(ok1(x1)) = 3 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(s1(X)) -> PROPER1(X)
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(sel2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(dbls1(X)) -> PROPER1(X)
PROPER1(indx2(X1, X2)) -> PROPER1(X2)
PROPER1(indx2(X1, X2)) -> PROPER1(X1)
PROPER1(sel2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(s1(X)) -> PROPER1(X)
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(sel2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(dbls1(X)) -> PROPER1(X)
PROPER1(indx2(X1, X2)) -> PROPER1(X2)
PROPER1(indx2(X1, X2)) -> PROPER1(X1)
PROPER1(sel2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = 3·x1   
POL(cons2(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(dbl1(x1)) = 3 + 2·x1   
POL(dbls1(x1)) = 3 + 2·x1   
POL(from1(x1)) = 3 + 2·x1   
POL(indx2(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(s1(x1)) = 3 + x1   
POL(sel2(x1, x2)) = 3 + 2·x1 + 2·x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(indx2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(dbls1(X)) -> ACTIVE1(X)

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(indx2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(sel2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(dbls1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = 3·x1   
POL(dbl1(x1)) = 3 + 2·x1   
POL(dbls1(x1)) = 3 + 2·x1   
POL(indx2(x1, x2)) = 3 + 2·x1   
POL(sel2(x1, x2)) = 3 + 2·x1 + x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))

The TRS R consists of the following rules:

active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(dbls1(nil)) -> mark1(nil)
active1(dbls1(cons2(X, Y))) -> mark1(cons2(dbl1(X), dbls1(Y)))
active1(sel2(0, cons2(X, Y))) -> mark1(X)
active1(sel2(s1(X), cons2(Y, Z))) -> mark1(sel2(X, Z))
active1(indx2(nil, X)) -> mark1(nil)
active1(indx2(cons2(X, Y), Z)) -> mark1(cons2(sel2(X, Z), indx2(Y, Z)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(dbl1(X)) -> dbl1(active1(X))
active1(dbls1(X)) -> dbls1(active1(X))
active1(sel2(X1, X2)) -> sel2(active1(X1), X2)
active1(sel2(X1, X2)) -> sel2(X1, active1(X2))
active1(indx2(X1, X2)) -> indx2(active1(X1), X2)
dbl1(mark1(X)) -> mark1(dbl1(X))
dbls1(mark1(X)) -> mark1(dbls1(X))
sel2(mark1(X1), X2) -> mark1(sel2(X1, X2))
sel2(X1, mark1(X2)) -> mark1(sel2(X1, X2))
indx2(mark1(X1), X2) -> mark1(indx2(X1, X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(0) -> ok1(0)
proper1(s1(X)) -> s1(proper1(X))
proper1(dbls1(X)) -> dbls1(proper1(X))
proper1(nil) -> ok1(nil)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(sel2(X1, X2)) -> sel2(proper1(X1), proper1(X2))
proper1(indx2(X1, X2)) -> indx2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
dbl1(ok1(X)) -> ok1(dbl1(X))
s1(ok1(X)) -> ok1(s1(X))
dbls1(ok1(X)) -> ok1(dbls1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
sel2(ok1(X1), ok1(X2)) -> ok1(sel2(X1, X2))
indx2(ok1(X1), ok1(X2)) -> ok1(indx2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.